

11

Eliminating Excise

Software too often contains interactions that are top-heavy, requiring extra work
for users. Programmers typically focus so intently on the enabling technology that
they don’t carefully consider the human actions required to operate the technology
from a goal-directed point of view. The result is software that charges its users a tax,
or excise, of cognitive and physical effort every time it is used.

When we decide to drive to the office, we must open the garage door, get in the car,
start the motor, back out, and close the garage door before we even begin the forward
motion that will take us to our destination. All these actions support the automobile
rather than getting to the destination. If we had Star Trek transporters instead, we’'d
dial up our destination coordinates and appear there instantaneously — no garages,
N0 motors, no traffic lights. Our point is not to complain about the intricacies of -

driving, but rather to distinguish between two types of actions we take to accomplish
our daily tagks,

Any large task, such as driving to the office, involves many smaller tasks. Some of
::}'ii:‘“lﬁks work directly towards achievfng the goal; these are tasks like steering
lrihu;el ;l‘_i.l‘nfld towards‘ your office. Excise tasks, on the other h.an.d, d.or.l’t con-
Same |5.u:le"'—'[l)’ to’ reaching the goal, but are necessary to accomphs.hlng it just .the

- “Uch tasks include opening and closing the garage door, starting the engine,

Nd sty . : s g S .
Orm; OPPing at traffic lights, in addition to putting oil and gas in the car and per-
"8 periodic maintenance.

Part II: Designing Behavior and Form

a work that satisfies either the needs of our tools or those of out-
istinction is sometimes hard to

side agents as we try to achieve our objectives. The d
see because we get so used to the excise being part of our tasks. Most of us drive so
frequently that differentiating between the act of opening the garage door and the
act of driving towards the destination is difficult. Manipulating the garage door is
not for us, and it doesn’t move us towards our desti-
steering wheel do. Stopping at red lights is
doesn’t help us achieve our
of arriving safely at our

Excise is the extr

something we do for the car,
nation the way the accelerator pedal and
something imposed on us by our society that, again,
true goal. (In this case, it does help us achieve a related goal
offices.)

g line between goal-directed tasks and excise
ivial and performing them
excise tasks are as obnoxi-
as do such excise tasks as

Software, too, has a pretty clear dividin
tasks. Like automobiles, some software excise tasks are tr

is no great hardship. On the other hand, some software
ous as fixing a flat tire. [nstallation leaps to mind here,
configuring networks and backing up our files.

tasks is that the effort we expend in doing them doesn’t go
lishing our goals. Where we can eliminate the need for
le more effective and productive and improve the usabil-
ly creating a better usen experience. As an interaction
me sensitive to the presence of excise and take steps to
thusiasm a doctor would apply to curing an infection.
The existence of excise in user interfaces is a primary cause of user dissatisfaction

with software-enabled products. It behooves every designer and product manager

to be on the lookout for interaction excise in all its forms and to take the time and

is excised from their products.

The problem with excise
directly towards accomp
excise tasks, we make peop
ity of a product, ultimate
designer, you should beco
eradicate it with the same en

energy to see that it

DESIGN Eliminate excise wherever possible.

principle

GUI Excise

One of the main criticisms
who are accustomed to comman
manipulating windows and menus to accomplish
users can just type in a command and the computer executes it 1
windowing systems, they must Open various folders to find the desi
cation before they can launch it. Then, after it appears on the screen,
stretch and drag the window until it is in the desired location and config¥

users
effort
dliné
with

leveled at graphical user interfaces by computer

d-line systems is that users must expend extra
something. With a comman
mmediateiy.
red file or appl”
they |1‘|ll$l
ration

Y

—4—

Chapter 11: Eliminating Excise

These complai
plaints are well fou
j nded. Ext :
are, indeed, excise. Th ra window manipulation ;
. b t
the applica’tions d em:zc?%n t move a user towards his goal; they areaOSkS Eke these
knows that GUTs are easi efore they deign to assist that person. B verhead that
¢ easier to use than command-line ysiedt Wh ut everybody
s. Who is right?

The confusion arise .

e, oo Rl nSl Efgael;see th.e real 1§sues are hidden. The command-line i

P) E lIllsswe excise budget on users: They must first fnmter-

personal requirements, T};e exciiz cefmnot casily configure his screen to hjse:lo_

e aftera S B et i of the .command—line interface becom ke
gnificant time and effort in learning it e smaller

O ¢
)

helps him navigate and]
earn what tasks ar)
step nature of th : ¢ appropriate and
e GUL s a great help to users who aren’t yet favn:}illjn- Tl'li St}TP"b}’-
ar with the task

or the system. It al
I so benefits those users who have more tha
use more than one application at a ti D one task to perform
me.

Excise and expert users

Any user willing to lear P 3

W Andgany N V\I:e raucsz?r?and—hne interface automatically qualifies

a power user of any other t (; ,a command-line interface will quickly b as a

leareadlh nongiee of thcs Y%Jle o. interface, GUI included. These users V):,-Hecor_ne

with a clear idea of exactl S\};lcatlons they use. They will start TR 11_ ea'sllY

user, the assistance offe ywhat they want to do and how they want p'p lcatlo'n
ered to the casual or first-time user is justin t;O e L

e way.

We must be
e careful wh imi
en we eliminate excise. We must not remove it j
ve 1t just to suit

power users. Simil
. arl
for our providing h y, however, we must not force power use
g help to new or infr equent users s to pay the full price

Training wheels

O

; 1¢ of the areas where

3 ‘;lt?ltnts of excise is in
ding facilities to a pro

software desi i
gners can inadvert i
ently introd G
support N y introduce signific
b du}c Ftha[fm:lfilst time or casual users. It is easy fo ju ?’ o
E I[.. Untorl‘unately these facils 'W‘ I'{lake 1t easy for newer users to le sty
1 with the prody t’ e facilities quickly become excise as b CA
t) (05 ; . user 0
% added 1o gq B lrPet‘lpetuzll intermediates, as discussed in Cil ecome famil-
are for the purp . apter 3. Facili
» Must be ezgi pose of training begi . N
asily tur o s ginners, such as step-
y turned off. Training wheels are rarely needed f(;fep bY-SgeP
r extended

of time
»and although
d user ugh they are a boon to begi
SCTs . 0 begin .
when they are left on s ginners, they are a hindrance to

Wizards
Periodg

Vance,

225

Part |l Designing Behavior and Form

o
- '\ k-
DESIGN J"j Don’t weld on training wheels.
principle

==

“"Pure"” excise

Many actions are excise of such purity that nobody needs them, from power users
to first-timers. These include most hardware-management tasks that the computer
could handle itself, like telling an ap plication which COM port to use. Any
demands for such information should be struck from user interfaces and replaced
with more intelligent application behavior behind the scenes.

Visual excise

Visual excise is the work that a user has to do to decode visual information, such as
finding a single item in a list, figuring out where to begin reading on a screen, or
determining which elements on it are clickable and w/hich are merely decoration.

Designers sometimes paint themselves into excise corners by relying too heavily on
visual metaphors. Visual metaphors such as desktops with telephones, copy
machines, staplers, and fax machines — or file cabinets with folders in drawers —
are cases in point. These visual metaphors may make it easy to understand the rela-
tionships between interface elements and behaviors, but after users learn these fun-
damentals, managing the metaphor becomes pure excise (for more discussion on
the limitations of visual metaphors, see Chapter 13). In addition, the screen space
consumed by the images becomes increasingly egregious, particularly in sovereign
posture applications (see Chapter 9 for an extensive discussion of the concept of
posture). The more we stare at the application from day to day, the more we resent
the number of pixels it takes to tell us what we already know. The little telephone
that so charmingly told us how to dial on that first day long ago is now a barrier t0

quick communication.

Users of transient posture applications often require some instruction to use the
product effectively. Allocating screen real estate to this effort typically does not
contribute to excise in the same way as it does in sovereign applications. Transient
posture applications aren’t used frequently, so their users need more assistance
understanding what the application does and remembering how to control it. For
sovereign posture applications, however, the slightest excise becomes agonizing

Chapter 11: Eliminating Excise

f)vzr time. jlknother -signiﬁcant source of visual excise is the use of excessively styl-
ized graphics and interface elements (see Figure 11-1). The use of visual style

should always be primarily i
- y in support of the clear communicati i i
and interface behavior. wtom ofinformation

Depending on the application, some amount of ornamentation may also be desi
able to crea.te a particular mood, atmosphere, or personality for the)};roduc: HeSIr_
ever, excessive ornamentation can detract from users’ effectiveness by forcin- tl?w—
"co decode. the various visual elements to understand which are controls and : 't'eni
information and which are mere ornaments. For more about striking the ri ilrtl l;(;
ance to create effective visual interface designs, see Chapter 14. i g _

Figu L i

exs(;:isr: :irlx‘: i:':? :?me Fage at Disney.com provides a good example of visual

o kot S ty sty Ee'd and doesnl’t fgllow a layout grid. It's difficult for users

ey t=?' ween e‘cor and‘nawgatmnal elements. This requires users to
ork to interact with the site. This isn't always a bad thing — just the

ght a|||0u ‘t f f b d T e(}‘]c [||ell |[|“]Er'||

227

228

Part Il: Designing Behavior and Form

Determining what is excise

an be useful for occasional users O USers with
special preferences. In this case, consider the function excise if it is forced on a user
cather than made available at his discretion. An example of this kind of function is
windows management. The only way to determine whether a function or behavior
such as this is excise is by comparing it to personas’ goals. If a significant persona
needs to see two applications at a time on the screen in order to compare or trans-
fer information, the ability to configure the main windows of the applications so
that they share the screen space is not excise. If your personas dor’t have this
specific goal, the work required to configure the main window of either application

is excise.

Certain tasks are mainly excise but ¢

Stopping the Proceedings

One form of excise is 50 prevalent that it deserves special attelzxtion. In the previous
chapter, we introduced the concept of flow, whereby a person enters a highly pro-
ductive mental state by working in harmony with her tools. Flow is natural state,
and people will enter -t without much prodding. 1t takes some effort to break into
flow after someone has achieved it. Interruptions like a ringing telephone will do i,

] an error message box. Some interruptions are unavoidable, but most others

as wil
are easily dispensable. But interrupting a user’s flow for no good reason is stopping

the proceedings with idiocy and is one of the most disruptive forms of excise.

DESIGN |©
principle
= ;A

Don't stop the proceedings with idiocy.

Poorly designed software will make assertions that no self-respecting individual

would ever make. It states unequivocally, for example, that a file doesn’t exist
.d to look for it in the right place, and then it implicitly

merely because it is to0 stupl
blames you for losing it! An application cheerfully executes an impossible query
that hangs up your system until you decide to reboot. Users view such software

behavior as idiocy, and with just cause.

Errors, notifiers, and confirmation messages

There are probably no more prevalent excise elements than error message
firmation message dialogs. These are so ubiquitous that eradicating them ©
of work. In Chapter 25, we discuss these issues at length, but for now; st

and co™”
akes @ lot
fﬁCC it to

Chapter 11: Eliminating Excise

say that they are high in exci
se and sh i
S eerer pos e should be eliminated from your applications

The typical error message box is unnec .
doest care abou essary. It either tells a user somethin
nd should usualfyof{ D?e.lrlnimds that hf: fix some situation that the applica%ig:‘:::;
layed by Adobe Iﬂustr;ts zs wefll. Figure 11-2 shows an error message box dis-
exactly sure what it tryi or 6 while a user is trying to save a document. We’

rying to tell us, but it sounds dire. - vere not

GoodTimes: 5
2] [

Unable to create font subset. Failed to embad the fant
Pratected fonts cannot be embedded.

=

:’ } The followin
! ety g problem occurred when saving the document

Figure 11- isi

Priceed:ngzgs-\l;::;l?d?gcug\lfy' usele,ss error message box that stops the

K o Tt STEBHTE)’c-)nzlu can't verify or identify what it tells you, and it gives

e mess: , Cmg other than to admit your own culpability with the

when you have entrustgd iti:ZZizrzzlt);]rr:geh the| apptljication el
simple and straightforward. The

application can't ev :
‘ en save a file witho : .
help it needs. ut help, and it won't even tell you what

The messa
ge stops an already a i ;
take even | y annoying and time-consumi
it AU : ing procedure, making i
cation to saveghis ar"rb1 - ;agnﬂt reliably fetch a cup of coffee after telling, th:lzmgl 'lt
work, because he mi PP
plete and) e might return onl :
and thie sonlicat) nly to see the fu i
Himinate it application mindlessly holding up the process. Wi dI?CUOn incom-
ese sorts of error messages in Chapter 25 - We discuss how to
Another fry, '

] stratin b
Figure 1.3 g example, this time from Microsoft Qutlook, is sho)
2 > W 1n

Part II: Designing Behavior and Form

E3

Rules Wizard

Microsuft-_ijchahga'Sewer._'f.'lnly one set of ules can

be saved. Which rules do you want to save?
t Server J Cancel J

Figure 11-3 Here is a horrible confirmation box that stops the proceedings with
idiocy. If the application is smart enough to detect the difference, why can'tit
correct the problem itself? The options the dialog offers are scary. It is telling you
that you can explode one of two boxes: one contains garbage, and the other
contains the family dog — but the application won't say which is which. And if you
click Cancel, what does that mean? Will it still go ahead and explode your dog?

/"': Rules created in this profile conflict with tules on the

This dialog is asking you t0 make an irreversible and potentially costly decision
hatsoever! If the dialog occurs just after you changed

based on no information w.
some rules, doesn’t it stand to reason that you want to keep them? And if you don’t,

wouldn’t you like a bit more information, like exactly what rules are in conflict and
tly created? You also don’t have a clear idea what

which of them are the more recen
happens when you click Cancel. . . . Are you canceling the dialog and leaving the

rules mismatched? Are’you discarding recent changes that led to the mismatch? The
kind of fear and uncertainty that this poorly designed interaction arouses in users
is completely unnecessary. We discuss how to improve this kind of situation in

Chapter 24.

Making users ask permission

Back in the days of command lines and character-based menus, interfaces indi-
rectly offered services to users. If you wanted to change an item, such as your
address, first you explicitly had to ask the application permission to change it. The
application would then display a screen where your address could be changed- Ask-
ing permission is pure excise, and unfortunat i
you want to change one of your saved addresses on Amazon.com yo
a button and go to a different page. If you want to change a displayed val
should be able to change it right there. You shouldn’t have to ask pel‘miSSiU

to a different room.

u have to click
ue,)’Gu
n or &0

e
N

’ , 4}
DESIGN J"L Don't make users ask permission.
principle
==

ely things haven't changed much — if

e R R,

Chapter 11: Eliminating Excise

As in the last exam P
filenames, numeriflxe;’a E:?Yaapcfhcanons have one place where the values (such
S e E e user i;l Ilt selecteq options) are displayed for out utc as
ion Trodelswhich treats i P;lt to them is accepted. This follows the impllejm and
b s e o (1;> .and o.utput as different processes. A user’s menta_
ROt A enfersd ngemze a dliference. He thinks, “There is the numb enltql
impulse, it is needlessly insertil\;v Valu.e. 'If the application can’t accornmodatzr.th_l
by a user, he should be ab] g excise into the interface. If options ar (L
able to do so right where the application displa;sntl}? -
em.

B
| DESIGN 7 Allow i
orinciple ow input wherever you have output

X

The opposite of askin .
) g permission can b g :
than asking th . e useful in certain ci
- bgackea aE_Ph;aUOP to launch a dialog, a user tells a illiracll(l)ms’tances. Rather
gering him evef tlllrz)ulgl};dgf way, a user can make an unhelpful diaigobgo ElWayband
J e application mistak Nl 2 ox stop bad-
now makes heavy u 8 et akenly thinks it is helpi i
box and can’t ﬁ‘glflreS ZO{ ﬁlls idiom. {If a beginner inadvertently dispnlqr'lg. Mlcr980ﬂ
ut how to get it back, he may benefit from EISGS @ dialog
another easy-to-

identify safety-net idiom i
atet) in a prominent ' .
back all dismissed dialogs,” for example.) place: a Help menu item saying, “Bring

Common Excise Traps

> Don't force
users to go to anoth i
er
S e window to perform a function that affects the

Don't force
users to remem
ber where they put things in the hierarchical fil
e system.

Don't forc
€ users to resize wi
ndows un .
on the screen necessarily. Wh ;)
’ the a i i . en a child win
make it big and e eplicatioihonidlsizeit appropriately for its o PRSP
mpty or so small that it requires constant sc ll‘contents- Don't
ro Ing.

Don't fo
rce users to mov .
the apolicat e windows. If there i
pplication there i . s open space on the
re instead of directly over some other alread desktop, put
ady open program

D :t
0 orce users O i a r
reenter helr perSOn ' set ings H: a person h
o as ever set a

ont, ac
O’Or, ani 2
indentatio
again n, or a sound, ma
unless she wants a change . make sure that she doesnt have to do it

231

232

Part |l: Desig

ning Behavior and Form

rary measure of completeness. If

s to fill fields to satisfy some arbit
n, don't force

details from the transaction entry scree
hat he has a good reason for not entering them. The

(in most instances) isn't worth badgering users over.

» Don't force user
a user wants to omit some
him to enter them. Assume t

completeness of the database
» Don't force users to ask permission. This is frequently @ symptom of not allowing
input in the same place as output.
(this requires a robust undo facility).

» Don't ask users to confirm their actions

» Don'tleta user's actions result in an error.

Navigation ls Excise

The most important thing to realize about navigation is that it is largely excise.
Except in the case of games where the goal is to navigate successfully through a
maze of obstacles, the work that users are forced to do to get around in software and
on Web sites is sel nd desires. (Though it

dom aligned with their needs, goals, &
should be noted that well-designed navigation can be an effective way 1o instruct

users about what is available to them, which is certainly much more aligned with
their goals.)
Unnecessary of difficult navigation is a major frustration to users. In fact, in our

opinion, poorly designed navigation presents oOne of the largest and most common
problems in the usability of {nteractive products — desktop, Web-based, or other-
wise. It is also the place where the programmer’s implementation model is typically

made most apparent to Users.

Navigation through software occurs at multiple levels:

» Among multiple windows, views, or pages

» Among panes or frames within a window, view, or page
» Among tools, commands, or menus
xample: scrolling, panning:

» Within information displayed in a pane of frame (for e

zooming, following links)

While you may question the inclusion of some of these bullets as types of navigd-
d definition of navigation: any

tion, we find it useful to think in terms of a broa
action that takes a user to @ €W part of the interface or which requires him 10 locaté
objects, tools, or data. The reason for this is simple: These actions require people 10

actuate W hat

understand where they are in an interactive system and how to find and
they want. When we start thinking about these actions as navigation
clear that they are excise and should, therefore, be minimized or eliminated:
Jowing sections discuss cach of these types of navigation in more detail-

Chapter 11: Eliminating Excise

Navigati [
: gation among multiple screens
views, or pages |

Navigation among multiple applicati)

disorienting kind sy pplication views or Web pages is perh

= disruptgs) use;ﬁ ;lz\xgaatg)? for users. It involves a gross shi?tingag; :}tlti I]i[l-ost

o another window also OﬂI;n orces him into a new context. The act of navi 1:ul'on

partly of completdlf obscuted Izeans that the contents of the original windf ing

io B o managemeni At th(f. very least, it means that a user needs to ‘X)are

steonstatl kel e l,(aln excise task that further disrupts his flow. If =

S e e frfl anc.l forth between windows to achieve the;ir uselrs

from the task at hand, and thSt-ratlon levels will rise, they will become di rw
) eir effectiveness and productivity will dro; istracted

If the number of wind i
e met eXP::iv: n1Cselarge.eno'ugh, a user will become sufficiently disori
piu ki nav1gat1.onal trauma: He gets lost in the izt Sforl_
Pl gl s B avoid this problem by placing all main i erac.
y view, which may contain multiple independenat[ln e
panes.

Navigation between panes

Windows can contain multiple panes — adj

S adjacent to each oth

t}:bs. Adj(a Cenfl;z?:;scii ir;;i 20) or stack'ed on top of each ot;reizi(;?:r:z:zj]‘;Y

T ;e 1znany nav1g‘ation problems because they pro 'dy

o ik til inks, or.data on the screen in close reach of 'Ic)heVl y

e th,os :s reducing navigation to almost nil. If objects 2 be
3 panes should be adjacent to each other. I

Problems arise when adjacent s :

placed on the . upporting panes become too n

panes result in S\il;(::; i?u:t::zy ’;hat mat.ches users’ workflows. 1;2?]:12;;231.‘: not

what they need. Also, crowdi nd confusion: Users do not know where to go tJ ;ent

Navigation within th,e si 1mg forces scrolling, which is another navi af' 01 H?d

trying to be everythi ngle screen thus becomes a problem. Som V%/ e
ything to everyone, have such navigational PrObIemZ eb portals,

1“ Sh]![c C . t
?
¢ app Op .a .

abbed :
panes includ
. e igati
Wtion because thon o ;1 level of navigational excise and potential for user disori
fem. Howeye y obscure what was on the screen before th sl b il
d v, this idiom s a . e the user nav1gated to
ppropriate for the main work area wh 1
en multiple

Otume
ats or ind
Xcel: see ependent views of a d
ce Figur a document are i
re 11-4) required (such as in Mi
‘ icrosoft

233

part Il: Designing Behavior and Form

Rvtwl

Dats

" m
= . 1 TR]
L |ffgene A ! g e i
e — TS =4 @
|2 iag o8| Condtional F o |l L sot& Fmal
= ' k=2 "_':‘""‘:z‘":' a‘?ahle' i -1\ .51"?“'" _' % Fiters Selre=

- wmqmv‘owwn—‘l

o

EEE

4R

s i e —re—

f) pameopeind b ol ||y seosis Ely:m—nu-al-m_n w !“ﬁ@&'@ff 2312/

makes use of tabbed panes (visible in the lower left)

to let users navigate between related worksheets. Excel also makes use of
djacent panes for viewing multiple, distant parts of a single
Both these idioms help reduce

Figure 11-4 Microsoft Excel

splitters to provide 2
spreadsheet without constant scrolling.
navigational excise for Excel users.

lities into smaller

ak complex product capabi
become easier if

capabilities will somehow
Actually, putting parts of a single facil-
d decreases users understanding and

Some programmers use tabs to bre

chunks. They reason that using these
the functionality is cut into bite-sized pieces.
ity onto separate panes increases excise an

orientation.
ism and is sometimes nec”

n a limited space. (Setting®
rested in seeing?

gle view.) I most
It is rarely P
Therefor®
they 3%

The use of tabbed screen areas is a space-saving mechan
essary to fit all the required information and functions i
dialogs are a classic example here. We don’t think anyone is inte
of the settings for 2 sophisticated application Jaid bare in a sin
cases, though, the use of tabs creates significant navigational excise.
sible to describe accurately the contents of a tab with a succinct label.
users must click through each tab to find the tool or piece of information

looking for.

Chapter 11: Eliminating Excise

Tabbed panes
can be appropriat

i e when th .

primary work area t ere are multiple supporti

bersteked-mmd: A hat are not used at the same time. The SuII:}f rttlng panes for a

J ser ca : . P

only a single click awa n;hoose,the pane suitable for his currentlzanlf ° Can-the.n

swatches area in Adob I}; classic example here involves the col = S
e [llustrator (see Figure 11-5). These two t 0101‘ mixer and

. o tools are mutuall
y

exclusive ways of i
selecting a drawi
. n
L (0 o T T g color, and users typically know which is

IX dSWatC es C pO de te ec S O F) C ga(()()

Navigation between tools and menus

Another important and overlooked £
use different too QERIEGEvisationicsult j
. Windowl?s Iziteits:ls,tand 'fu.nc‘ti(.)ns. Spatial organizat?ofrrlo(r)l; }cl}j:: n?ed's °
TS T —— 12) minimizing extraneous mouse movement th}:hm .
stress injury. Tools that are u(;zzcllnfc ¢ and fatigue, and at worst, result in rse ?’t"at
should be grouped together s _fequently and in conjunction with eaqlze Eve
require more navigational effo Iiatlaﬂ)’ and also be immediately available 1\/? N
visble prior to clicking, Fre ur t(in the part of users because their content; enus
palettes, or the equivalent qun y used functions should be provided i o
. Menu use should be reserved only for irllr;rz(;?llbarls,
ently

accessed command i

q s (we disc . s

d) uss organizin .

1scuss toolbars in depth in Chaptegr 23) g controls again later in this chapter and

Adobe Photoshop 6.0 s
users to navia: .0 exhibits some undesirable el
the Grad?;:’tlgtzi)e] between palette controls. For exa.r:;ia‘;féspn.l the way it forces
etween them b;a;}l-l if:cupy the same location on the t:z)ol Pa:leﬁz-BUCket o 2
menu that lets yo icking and holding on the visible ¢ yyou must select
you select between them (shown in Figure 1?]2;011; which opens a
-6). However, both are

fill tog]
$,and both are fr
equently used. It would |
{ have been better to
place each of

e on t}
, 1€ palett;
Ny o s el
Vigation, 1ext to each other to avoid that frequent, flow-d
, flow-disrupting tool

235

236 Part II: Designing Behavior and Form

AYEIK

.

% #OL

PRl TS

.

|7 & e

I

e
=5

L-.
|]§
i | &

oo

CELY

=4

Figure 11-6 In Adobe Photoshop, the Paint Bucket tool is hiddenina
on its tool palette. Even though users make

combutcon {see Chapter 21)
frequent use of both the Gra
to access this menu any time

ket tool, they are forced

dient tool and the Paint Buc
hese tools.

they need to switch between t

Navigation of information
or of the content of panes or window:

scrolling (panning), linking (jumping
iquitous in Most software,

s, can be accom-

Navigation of information,

plished by several methods:
The first two methods are common: Scrolling is ub
linking is ubiquitous on the Web (though increasingly,

adopted in non-Web applications). Zooming is primari
3D and detailed 2D data.

Scrolling is often a necessity, but the need for it should be

ble. Often there is 2 trade-off between paging and scrolling info
should understand your users’ mental models and workflows to dete

best for them.

applications, vertical and horizontal

benefit froma thumbnail map to €as¢ n
later in this chapte™

In 2D visualization and drawing

common. These kinds of interfaces
We'll discuss this technique as well as other visual signposts

), and zooming.
and
linking idioms are being
ly used for visualization of

minimized when posst
rmation: You
cmine what 15

scrolling are
avigatio™

Chapter 11: Eliminating Excise 237

S S
18

locating activi
vity, ex m
o Yy, extra care must be taken to provide vi
TG ERTRers: provide visual and textual cues that

Zooming and panning are navigati
tion. These meth gat1onal tools for exploring 2D i
il exploringof:pir; :Egi ?Prlate when creating 2D or 3]% dravi?:g: ?nijnfOIma_
walkthroughs, for example) ;f)li sy ?;pg:hw?lﬁd h3D environments (architl:c(zjii
trary or abstract d e i y tall short when used i i
S lizon tOOISatES};reZssg:rc;d in more t}:an two dimensions. S(;[fnzxiirg)l;l i ar'bl_
objects? a logical rather the to r.nean, ‘display more attribute detaﬂsmeglon
et s obied Fei) G n spatial zoom. As the view of the object e la out
This kind of interaction ispaﬁ)rfr superimposed over its graphical represerrllta:ge&
porting pane that displays the ost alwa}ys better served through an adjacen ta ion.
D fable fofm, Users Bod s tI'Jrlopertles O.f selected objects in a more st ds up-
Joom is arcane to all but vi Pa. 1a lzoorn difficult enough to und .an z?rd,
ut visualization researchers and the occasion:Stand) i
programmer.

Panning and zoomin i }
4ics for users. While thgi)sizpizlarﬂy .when paired together, create navigation diffi

quite easy for people to get lop (_)Vln'g due to the prevalence of online maps _1 : 1Cu.1_

unconstrained 3D space, and St’;lln virtual 'space. Humans are not used tolzn, L .15 St.lﬂ

projected ona 2D screen, (see C ey have difficulty perceiving 3D properl (1)1V1ng in

ee Chapter 19 for more discussion of 3D man};}:\lfll;? i ;S

ion).

i proving Navigation

e are many ways to begin i .

= - gln 1Improvin iminati

At . g (eliminatin i -

gation in your applications, Web sites, and devicesg,I;Zi:1 ;zior speeding up)
0 e most effective:

»
Reduce the number of places to go

> Provide signposts.

» .
Provide overviews.

> Provide a i
ppropriate mapping of controls to functions

» I Ie(ri f m "] er ne (i
you Interface to atch us e
T ! S.

> Avoid hierarchies.

We'll g;
discuss these in detail below.

238 Part Il: Designing Behavior and Form

Reduce the number of places to go
e obvious: Reduce

ctive method of improving navigation sounds quit
e must navigate. These “places” include modes,

a screens. If the aumber of modes, pages, ot
tay oriented increases dramati-

f navigation preserited carlier, this directive means:

The most effe
the number of places to which on

forms, dialogs, pages, windows, an
screens is kept to minimum, people’s ability to s

cally. In terms of the four types 0

» Keepthe number of windows and views to a minimum. One full-screen window
with two or three views is biest for many users. Keep dialogs, especially modeless
dialogs, to a minimum. Applications of Web sites with dozens of distinct types of

pages, screens, of forms are difficult to navigate.
Web page limited to the

s. In sovereign applica-
bsolutes here —

djacent panes in your window of
ded for users to achieve their goa

g to shoot for, but there are N0 @
es, anything more than two

» Keep the number ofa
minimum number nee
tions, three panes is a good thin
in fact many applications require more. On Web pag

on areas and one content area begins to get busy.

your users really need to meet

ersonas will enable you 1o

ant or need and that,

navigati
r of controls limited to as few as
d grasp of your users via p
ols that your users don't really w

» Keep the numbe
their goals. Having a goo
avoid functions and contr
therefore, only getin their way.

» Scrolling should be minimized when possible.
gh room to display information 0 that they don't require constant
nd 3D diagrams and scenes should be such thata

round. Zooming, particularly
ers, sO its

This means giving supporting

panes enou
scrolling. Default views of2Da
self without too much panning a
he most difficult type of navigation for most us

not a requirernent.

1 because the designers are trying
buys books but never CDs froma
ized in the main screen
oks, and the navigation
his version 0

user can orient him
continuous zooming, ist
use should be discretionary,

resent confusing navigatio

one generic site. If a user
f the site could be deemphas

Many online stores p
to serve everyone with
site, access tO the CD portion 0
for that user. This makes more room for that user to buy bo
becomes simpler. Conversely, if he visits his account page frequently,
the site should have his account button (ot tab) presented prominently.

Provide signposts
ce uSerS‘

1n addition to reducing the number of navigable places, another way to enhan 4
ints of reference — signpos™

ability to find their way around is by providing better point

Chapter 11: Eliminating Excise

In the same w. ;
ay that sailors navi
by referen) vigate by reference to shoreli
) ce to persistent objects placed in a user interf: Ines or stars, users navigate
ace.

Persistent objects, i
application Iilost’ll';e?yd;itzp W(.)ﬂd’ always include the program’s windows. E
window are also considered oo top-level window. The salient features S.f "
palettes or visual features lik persistent objects: menu bars, toolbars dO o
interface has a distincti ike status bars and rulers. Generall L other
istinctive look that will soon become recogn.y’ ECh window of the
1zable.

On the Web, similar r
. ’ ules apply. Well-desi
sistent objects th . . esigned Web sites mak
- top-le)v L E'lt re.maln constant throughout the shoppin C car_eful use of per-
vigation bar along the top of the page. Not oif;{fieri;nce, ESReRid
) o these areas pro-

vide clear navigatio i
- gational options, but their consistent
customers (see Figure 11-7) presence and layout also help

[
Design Within Reach - S
each - Shop Ry Genre - Mocilla Firefax
4 Eit Yew Go Gookmaks ookt =)
o =)
=Sk

T L1
9

H -—
My Accounl = Wisklist e View Cad e
argy
Catalig Ouek Shop = 2

_——
[DESIGN| SHOPDWR = HEV
x WSLET SIGH-
WITHIN TIER SGHAUP ¢ DESONERS -
|[REACH

MO LOCATION * GETCATALOG
|

= =L

Yhars Heve
.
il

= | e RS

Tables
Lghbng —

Shel 1SH High

e storage [Pries towr - High 2}

Cutds

Becicarss o
Media Storsge

wall Mourd

CredenzeySidabasrds

Worscace

Cn Sale

Al Ehalvng'Siorage
Accessores

Xy 2 UbEs Doer: si2 10 - Froaied Do
Cubds Backs [
Salof bis Boors Sal of
Sopporo - Fronled Doars
78

Sral S3a

e Sputio

MR Exciayey |
O ey

:ﬂﬂ:
] Sagperc - Trans

! ek spsrsed Daars, Bean Psatiase S0t

$148 o Cubds

= $178

Sy
=‘--_.___________
Figure
11-7 The Desi o S T T -

areas o the majois'g:-w'thm Reach Web site makes use of m i .
199, and the brow ity of its pages, such as the links and search f'alny ey

ere they con gosz tools on the sides. These not only help u e (;l along the

sers fi
ut also help keep them oriented as toF\)Nheersﬂl]gure out
re they are.

0K
il

[

240

Part Il: Designing Behavior and Form

to screens, but hardware controls themselves can take
ey are able to offer visual or tactile
for example, light when selected,
| information if inte-

In devices, similar rules apply
on the role of signposts — even more so when th

feedback about their state. Car radio buttons that,

even a needle’s position on & dial, can provide navigationa

grated appropriately with the software.

Depending on the application, the contents of the progrant’s main window may
also be easily recognizable (especially true in kiosks and small-screen devices).
Some applications may offer a few different views of their data, sO the overall aspect

of their screens will change depending on the view chosen. A desktop application’s

distinctive look, however, will usually come from its unique combination of menus,
rs must be considered aids

palettes, and toolbars. This means that menus and toolba
essfully. They just

to navigation. You dor’t need a lot of signposts to navigate succ
need to be visible. Needless to say; signposts can’t aid navigation if they are

removed, so it is best if they are permanent fixtures of the interface.
st like every other one may appeal to

disorienting. Certainly, you should use
fferent rooms look

Making each page on @ Web site look ju
f carried too far, be

marketing, but it can, i
common elements consistently on each page, but by making di

distinct, you will help to orient your users better.

Menus

The most prominent permanent object in an application is the
its title and menu bars. Part of the benefit of the menu comes from its reliability
and consistency. Unexpected changes to a programy’s menus can deeply reduce

users’ trustin them. This is true for menu items as well as for individual menus.

main window and

Toolbars
If the application has a toolbar, it should also be considered a recognizable sign-
:dioms for perpetual intermediates rather than for

post. Because toolbars are 1
beginners, the strictures against changing menu items don’t apply quite as strongly
the toolbar itself is certainly dislocating

to individual toolbar controls. Removing

change to a persistent object. Although the ability to do so0 should be ther® it

shouldn’t be offered casually, and users should be protected against accidentally
Is on the toolbar that make the toolbar

triggering it. Some applications put contro
disappear! This is a completely inappropriate ejector seat lever.

Other interface signposts
Tool palettes and fixed areas of the screent where data is displayed 0

also be considered persistent objects that add to the navigation
face. Judicious use of white space and Jegible fonts is importan
arly evident and distinct.

inter

posts remain cle

¢ edited should

Chapter 11: Eliminating Excise

Provide overviews

Overviews ser Qi
ve a similar purpose .
] to sign 2 .
R e gnposts in an interface: Th .
= . : They h

than within the ap lilcs Elat overviews help orient users within theyc()if e o

itself be persistent-P ation as a whole. Because of this, the overvi L
; its content is dependent on the data bei rview area should

ing navigated.

Overviews can b i
e
graphical or textual, depending on the nature of th
e content. An

excellent exampl g
ple of a graphical overview i
e
Adobe Photoshop (see Figure 11-8). wiisltherptly named Nayigator*palettesin

feomid 5 i ¥) 94 008 =9 4517 53
I Am 3% YTO M1xBap 39« Hov £, 2008 =935 {1
RYi 1)

(%]
el rA
’ \

,,..__,\ .
~ -
o R e |

/ - " 23

70

’]
O¢1 2006
e

FRENURN] '
Zt;_;..l sl .;.:.1.1.L1‘;.!.i.5.1_1 Lebiid ;
2002 2004 2005 --L‘_zla-oLs‘-.ﬁ r

=01 I i
i3

Figure 11-8 On the
Photoshop: the Navi'::['o'?dolbe make;s use of an excellent overview idiom in
mage with an outlined bof:hette, which provides a thumbnail view of a lar
visible in the main display. Th at represents the portion of the image currenijle
can be used to pan and Z(‘)or:tialettg noft only provides navigational contex:/ but i
on the right in the Google Finane main filsp|ay as well. A similar idiom is em '| " Clit
bottom provides a big pi ,Ce charting tool, in which the small h oAl
ig picture view and context for the zoomed-in v?er\?vp kg
a on top.

In the Web world, the m
s b e ¥ displayo(s:eco;lmon form of overview area is textual: the ubiqui
only a navigational aid, b € lgur.e 11__9). Again, most breadcrumbs. ro 'dlqul-
! o oovidatio struct, ut a I‘lav1gat10nal control as well: They notp ‘{1 o
T iurc;e a visitor is, but they give him tools to move tor:i?, o
i n the form of links. This idiom has lost som = lff'erent
k. organizaﬁon: ‘:]:ray from strictly hierarchical organizatio e il
, which don’t lend themselves as neatly to brenjl B mgre o
adcrumbs.

Fsarih Books

i)

Subjects > Proar: I3
Lomputers & lnternet
Computers & Internet > Programming > Soft
oftware Design

B T
Books > Bramse: | Ch

Figur
e11.9 :
the Atypical breadcru i
mb display from Am
azon.com. Users see whe
re

Yvebeen 5

241

Part Il Designing Behavior and Form
Chapter 11: Eliminating Excise 243

A final interesting example of an overview tool is the annotated scrollbar. Anno-
tated scrollbars are most useful for scrolling through text. They make clever use of
the linear nature of both scrollbars and textual information to provide location
information about the locations of selections, highlights, and potentially many

about the locations of

other attributes of formatted or unformatted text. Hints
these items ap umb of the scrollbar moves in, at the

pear in the “track” that the th
appropriate location. When the thumb is over the annotation, the annotated fea-
ture of the text is visible in the display (see Figure 11-10). Microsoft Word uses a
variant of the annotated scr mber and nearest header in

ollbar; it shows the page nu
a ToolTip that remains active

Figure 11-11 A stovet ;
op with poor physical) '
on the far-left physical mapping of control
mappin control The left-front or left-rear burner? Use y poes e
pping anew each time they use the stovetop : rs must figure out the

during the scroll.

In this case, we hav .
> e a physical mappin
reasonably clear: A b _ ping problem. The result of usin .
Y ey Whilglnf)r will he.at up when you turn a knob. Howixilre Elcl)ntml y
most knob turn on the 1 Lgnffr will get warm — is unclear. Does twisti g ti talrget
e left-front burne i ' iR gielleft
B rsmudtfndiodt . 1, or does it turn on the left-
toobs. The unnatura‘i}: trlalfarﬁd error or by referring to the tiny iconze:llr t;um(;r?
) ess of the mapping ¢ ext to the
out anew every ti g compels users to figure thi i i
| . A y time t-hey use the stove. This cognitive work ; is relationship
n annotated scrollbar from Microsoft Word 2007 provides useful . ver time, but it still exists, making users may become semicon-
. b r .
he navigates through a document. distracted (as people often are while prepari prone to error if they are rushed or
users feel stupid because they’ve twisted t}fanng meals). In the best-case scenario
e wrong knob, and thei i
: > ir food doesn’t
get

hot until they noti
otice
Ly I’ the error. In the worst-case scenario, they mi -
mselves or set fire to the kitchen ey mightiactidentally

page: 5
Determining what is excise

Figure 11-10 A
context to a user as

Provide appropriate mapping of controls to

functions

Mapping describes the relati
intended result. Poor mapping 18 evident when a contro
symbolically with the object it affects. Poor mapping requires us
about the relationship, breaking flow. Poor mapping of co
increases the cognitive load for users and can result in potentially serious user €r

The solution requi d
quires moving the physi .

they better su . & physical locations of the stovet
the thing it affects, and the in exactly the ffﬁ:(te ;)Vellltlt(;};fur?;rsb they control. The knobs don’:il:‘lf)el:)l(}))zsl S'Odthat

isually or t . as the burners, but th . GReLOu
1 does not lrelat'(e v;s::ialt]:’i ::k : e?; egett. of each knob is clear. The stovetop in Figzy 5}11(1)115 be positioned so that the
ers to Stop ¢ ctive mapping of control re 11-12 is a good exa

S. mple of an

ntrols to functions
YO15.

onship between a control,

In thls la Onb)
yout, it’s clear that th
Placement of e upper-left knob control
each . ols the u -1
man (1989) callc 1’11<.nob v151fally suggests which burner it will tiper i
s this more intuitive layout “natural mapping.” rn on. Donald Nor-
ing.

Another

; example i

Figure 11_13.IP of poor mapping— of a different type —is pictured i
ured in

n this it g
u case, it .
elear. , it is the logical mapping of concepts to actions that i
is

digital world of gas

ping problems comes from the non
eofd

and electric ranges. Almost anyone who cooks has run into the annoyanc
stovetop whose burner knobs do not map appropriately to the burners they con”
trol. The typical stovetop, such as the one shown in Figure 11-11, features ‘“’r_
burners arranged in a flat square with a burner in each corner, Howeveb the k‘f“ 3
that operate those burners are laid out in a straight line on the front of the unit

An excellent example of map

244

Part II: Designing Behavior and Form

{

Figure 11-12 Clear spatial mapping. On this stovetop, it is clear which knob
maps to which burner because the spatial arrangement of knobs clearly

associates each knob with a burner.

ﬁ [Jadd To saved Auto
1937 FORD ROADSTER, High Boy Roadster, Fly Yellow with Black Leat

Figure 11-13 An example of a logical mapping problem. If a user wants to see
the most recent items first, does he choose Ascending or Descending? These

terms don't map well to how users conceive of time.

The Web site uses a pair of drop-down menus to sorta list of search results by date.
The selection in the first drop-down determines the choices present in the second.
When Re-sort Results by: Date Placed is selected in the first menu, the second drop-
down presents the options Ascending and Descending.

Unlike the pootly mapped stovetop knobs, the target of this control is clear — the
drop-down menu selections will affect the list below them. However, the result of
using the control is unclear: Which sort order will the user get if he chooses

Ascending?

The terms chosen to communicate the date sorting options make it unclear what

users should choose if they wish to see the most recent items first in the list.
Ascending and Descending do not map well to most users’ mental model of time.
People don’t think of dates as ascending or descending; rather, they think of dates
and events as being recent or ancient. A quick fix to this problem is to change th¢
wording of the options to Most Recent First and Oldest First, as in Figure 11-14.

Chapter 11: Eliminating Excise

1932 i
FORD ROADSTER, High Boy Roadster, Fly Yellow with Black Leat

Figure 11-14 Clear logi i
gical mapping. Most Recent and
users can easily map to time-based sorting. e Oidestare terms het

Wheth. i

i mear yoiu make appliances, d.esktop applications, or Web sites, your product m
ave m 1;)1;1) ng prgble.ms. Mapping is an area where attention to detail pays off ”

y easurably improve a product by seeking out and fixing mappi;’g prob_

] nges. The i

Inflect your interface to match user needs

Inflectin. i S
i o gan lnte;face means organizing it to minimize typical navigation. In
» this means placing the most fre ' R
. quently desired functi :
most immedi : : ons and controls in t
S vt iate ?nd convenient locations for users to access them, while ush’he
equently used functions deeper into the interface whe)re userI; m’g
J won’t

stumble over them. Rarel Tits
. y used facilities shouldn’t be
but they should be removed from the everyday WOrkSPI:EOVCd from the program,

. DESIGN

Sineile Inflect the interface for typical navigation

The most i inciple i
e os;tl-rlgt?llgznflpai:lnc11;llc in the proper inflection of interfaces is commensu-
S Sg . a;.)pl ies to all users, it is particularly pertinent to perpetual
o Samething. o is:;nc::lp e Inerely states that people will willingly work harder
| s Itr]e.va uab!e to get. T}}e catch, of course, is that value is in
g . It has nothllng to do with how technically difficult a feat
) ent, but rather has entirely to do with a person’s goals "
a person reg i i |
b g:‘i;l(lil)tre:i?:s siomettlj ing, he will work harder to get it. If someone wants to
S i Whopdayer, , or examp]_e, he will get out on the court and play very
i W oesn t-llke tennis, any amount of the sport is tedious effort
and gy, : ormatl beautiful documents with multiple col .
¥ headings to impress his b ‘wi ol e e
e recegeg of o0 p s boss, he will be highly motivated to explore
into g oaly pplication to learn how. He will be putting commensurat
- Il some other user just wants to print plain old documents ";’;{i’z

246

Part |I: Designing Behavior and Form

column and one font, 0o amount of inducement will get him to learn those more

advanced formatting features.

DESIGN Y Users make commensurate effort if the rewards justify it.

principle

res to your application that are necessarily complex
ly if the rewards are

to tolerate that complexity on
face can’t be complex t0 achieve simple

mplex results (as long as such results

This means that if you add featu
to manage, users will be willing
worth it. This is why a program’s user inter
results, but it can be complex to achieve co
aren’t needed very often).

1 interface perspective to make advanced features something

d a little extra effort to activate, whether that means search-
drawer. The principle of commensu-

It is acceptable from a
that users must expen
ing in a ment, opening a dialog, or opening a
rate effort allows us to inflect interfaces so that simple, commonly used functions
are immediately at hand at all times. Advanced features, which are less frequently
used but have a big payoff for users, can be safely tucked away where they can be

brought up only when needed. Almost any point-and-shoot digital camera serves
jon: The most commonly used function — taking a

as a good example of inflect
picture — 18 provided by a prominent button casily accessible at 2 moment’s
notice. Less commonly used functions, such as adjusting the exposure, require

interaction with onscreen controls.
ed in an interface according

splays should be organiz
location, and degree of risk

In general, controls and di
cy of use, degree of dis

to three attributes: frequen
exposure.

s, functions, objects, or displays
lterns and tools that are most fre-
diately in reach, as discussed in

rmeans how often the contro
_to-day patterns of use.

a day) should be imme
ms, used perhaps once or twice a day,

o away. Other items can be two or three

» Frequency of use
are used in typical day
quently used (many times
Chapter 10. Less frequently used ite

should be no more than a click or tw
clicks away.
n interface of

e amount of sudden change in a
the

lication caused by
good
10 for

» Degree of dislocation refers to th
in the docurnent/information being processed by the app
on of a specific function of command. Generally speaking, it'sa

invocati
deeper into the interface (see Chapter

idea to put these types of functions

an explanation).

Chapter 11: Eliminating Excise

» Degree of risk ex i i
e o Z?jil;-re c.ieals WI.’th .functlons that are irreversible or may have
S |ca-t|on\'°,. Missiles require two humans turning keys
T fop:;iii':es of the room to arm them. As with dislocating
ey ese types of functions more difficult for your users
el .mess of an undesirable can even be thought of
s likelihood and its ramifications e

Of course, as u
> sers get more experienced wi
th these fe -
shortcuts, an ; Wl se features, they will
d you must provide them. When software followsy ki
commensurate

effort, the learnin
' g curve doesn’t go awa it di
L —— g y, but it disappears from the user’s mind —

Avoid hierarchies

Hierarchies are one mm
of the progra d M h
LS S er’s most durabl
inside application ng wi dftoe sy MND
= f(I)Drp . t;;.alo g with much of the code that manipulates it, is flr: }f' e
m. is reason, many program i , =y
S) grammers present hierarchies im
mBut abstracmt B el) in user interfaces. Early menus, as we’ve seen, were h('the 1 hplael_
ierarchi i : . |
R ;cclhles are very difficult for users to successfully navi at(i,l o
W] on user mental models and the categories are truig , etX Celrl)t
y mutually

exclusive. Thi i i
1 is truth is often difficult for programmers to grasp b
selves are so comfortable with hierarchies SNt

Most humans are familiar with hierarchies i i i
e ies in their business and fami i
Stofing . retegec‘l:ilzsg zzj; irtlot ne}tural cor‘lce'pts for most people when }Z ::Li:? f[1(;
b ongses Ofl;arly 1111format10n. Most mechanical storage systems are
B s leves;zg SIS eAgs of stored objects (like a bookshelf) or
P l,ayer . eep.(hke a file cabinet). This method of organizin
B o e Offgrml;ps is exj[remely common and can be found ever %
b s it never exceeds a single level of nesti o
gm monocline grouping. e

Programmers are very comf i

g y m ortable with nested systems where an in

™ = st fll Eeaxi‘ﬁli; ‘1n§tance of the same object. Most other hu;tljzlcsehzf/: .

Fems’ N e is idea. In thf: mechanical world, complex storage s :_l

m.et) g See, o (;reP(;c mechanical form factors at each level: In a file czb—

et s n.51 fz folders or file drawers inside file drawers. Even th

ke g T g : older-inside-drawer-inside-cabinet rarely exceed . Even the

RSt foldy iy E c;: llrent de:v.ktol? metaphor used by most window syste e

COnfused .1 older ad infinitum. It’s no wonder most com ke
confronted with this paradigm. prieTmeopye e

247

248

Part i1t Designing Behavior and Form

ks or piles based

The Acme papers 80 here; the Project M papers go

Most people store their papers (and other items) in @ series of sta
on some common characteristic:
there; personal stuff goes in the
cabinet. Only inside computers do peo

Active Clients folder, which, in turn, is sto

the Business folder.

n (1994) calls this a pile

M documents inside the
red inside

drawer. Donald Norma
ple put the Project

red inside the Clients folder, sto

ols to solve the very real
aantities of data. But when this implementation
model is reflected in the manifest model presented to users (see Chapter 2 for more
on these models), they get confused because it conflicts with their mental model of
storage systems- Monodline grouping is the mental model people typically bring to
the software. Monocline grouping is so dominant outside the computer that inter-

action designers violate this model at their peril.

Computer science gives us hierarchical structures as 10

problems of managing massive q

physically managing the large

but that doesn’t mean it isn't
der the struc-

Monocline grouping {s an inadequate system for

quantities of data commonly found on computers,

useful as 2 manifest ‘nodel. The solution to this conundrum is to ren

ture as a user {magines it — 33 monocline grouping — but to provide the search

and access tools that only a deep hierarchical organizatic»n can offer. In other

words, rather than forcing users (o navigate deeps complex tree structures, give
we'll discuss some design solu-

them tools t0 bring appropriate information 0 them.

tions that help to imake this happen in Chapter 15

12

Designing Good Behavior

As we briefly discu i
. Cliff(zfrd NaSSSS:d dn;; Chapter 10, research performed by two Stanford sociol
.t tell them how tonbehyron ReeVe;, suggests that humans seem to have insti:;t_
s ave around other senti i s
exhibits suffici : - ntient beings. As soon j
o el 1EI1ent levels of interactivity — such as that fougnd — as an object
ication — —— h ur ave i
p these instincts are activated. Our reaction t(): softwa\rage sof
2 re as sen-

tient is both unconscious and unavoidable

The implication i
of this research is
rofound: If wi .
we should design P) ¢ want users to like our
ik — bgi ’;hzm t.o be}?ave in the same manner as a likeable persirr? d;CtS,
L pooriise hump oductive with our software, we should design it to beh ' likwe
an . ; av

working relati h.COHeague_ To this end, it’s useful to consider the e

jonship between human beings and compute appropriate

rs.

. Th
e computer does the work and the person does the thinkin
g.

principle | !
The ideal di
eal division of | i
I of labor in the computer age i
N ge is very clear: The computer s
B et : per;on shou?d do the thinking. Science ﬁctionpwrite:1 Oulj
oI arita ize us with visions of artificial intelligence: co .
emselves. However, humans dor’t really need m- hn}llpluters
uch help in

